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ABSTRACT 
In this paper, we present the results of a study designed to investigate the visual factors which 
contribute to the perceived quality of synthesized textures. A psychophysical experiment was 
performed in which subjects rated the quality of textures synthesized from a variety of modern 
texture-synthesis algorithms. The ratings were given in terms of how well each synthesized texture 
represented a sample from the same material from which the original texture was obtained. The 
results revealed that the most detrimental artifact was lack of structural details. Other pronounced 
artifacts included: (1) misalignment of the texture patterns; (2) blurring introduced in the texture 
patterns; and (3) repeating the same patch again and again (tiling). Based on these results, we present 
an analysis of the efficacy of various measureable parameters at predicting the ratings. We show how 
a linear combination of the parameters from a parametric texture-synthesis algorithm demonstrates 
better performance at predicting the ratings compared to traditional quality-assessment algorithms.  
 

1.  INTRODUCTION 
Given an example texture, the goal of texture synthesis is to generate (synthesize) a new sample of 
texture which, to a human observer, appears to be taken from the same source material. Over the past 
several decades, a large body of research has focused on developing accurate and efficient texture-
synthesis algorithms. Parametric texture-synthesis algorithms operate by first analyzing the input 
texture to measure various parameters (e.g., low-order statistics), and then synthesizing a new texture 
sample by molding a random pattern to exhibit the same or similar parameters (e.g., Refs. 1, 2). Other 
texture-synthesis algorithms are generally considered non-parametric algorithms which operate using 
a variety of techniques ranging from strategic tiling to model-based approaches (e.g., Refs. 3-6). Some 
key applications of texture synthesis include its use in texture-synthesis-based image and video 
coding, computer rendering, and occlusion fill-in. The underlying models used to represent textures 
have also found use in applications such as texture retrieval and segmentation. 
 Yet, despite the advancements in texture modeling and synthesis, much less effort has been 
focused on developing algorithms for assessing the visual quality of a synthesized texture. Given two 
synthesized versions of an original texture, a human observer can readily determine which of the two 
synthesized versions better represents the original source. From a computational standpoint, however, 
this task is extremely challenging. Although a great deal of human vision research has been conducted 
to investigate the perceptual and neural mechanisms which underlie the visual appearance of texture 
(see Ref. 7 for a review), it remains unclear how these mechanisms can be applied to quality 
assessment of synthesized textures. A major factor which complicates this task is that point-by-point 
comparisons, a common approach used to some extent by all modern quality-assessment algorithms 
cannot be used to compare the visual similarity of two textures. In the context of texture retrieval, 
Zujovic and Pappas8 address quality-assessment of textures by designing a structural similarity index 
specifically for textures. In Ref. 9, Pappas and Zujovic also demonstrate the utility of their index for 
texture-synthesis-based image compression. 
 In this paper, we focus specifically on quality assessment of textures generated by texture-
synthesis algorithms. We believe that this specific focus on synthesized textures is an easier and more 
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feasible task than general texture similarity because the images to be compared (synthesized vs. 
original) generally exhibit some degree of visual similarity. Here, we present the results of a 
psychophysical experiment performed to obtain subjective ratings of synthesized-texture quality. 
Forty-two original textures were chosen from the Brodatz database.10 The textures were chosen by 
selecting six textures from each of the seven perceptual clusters previously reported for the Brodatz 
textures.11 Six texture-synthesis algorithms were used to generate synthesized versions of each 
original texture (6x42=252 synthesized textures). We then asked human subjects to rate the quality of 
each synthesized texture in terms of how well it represented a sample from the same source material 
from which the original texture was obtained. The ratings were made relative to all other synthesized 
textures in the database. 
 We then analyzed the results of the database, both qualitatively and quantitatively, in an attempt 
to answer the following questions: 

1. What types of common texture-synthesis artifacts do subjects find most/least displeasing? 
2. To what extent does the impact of an artifact depend on the type (category) of the texture? 
3. Can the parameters from a modern texture-synthesis algorithm be used to predict the ratings 

for textures synthesized from other parametric and non-parametric methods? 

This paper is organized as follows: Section 2 presents the details of the psychophysical experiment. 
Section 3 discusses the experimental results and predictions. General conclusions are provided in 
Section 4. 
 2.  METHODS 
2.1 Apparatus and Subjects 
A psychophysical experiment was conducted to rate the performance of six texture synthesis 
algorithms based on their visual quality. Eight adult subjects including the first author participated in 
the experiment. All subjects had either normal or corrected-to-normal visual acuity. All subjects were 
between the ages of 22 to 28 years. Stimuli were displayed on a LACIE 324, 24-inch LCD monitor 
(1920 × 1200). The display yielded minimum and maximum luminance’s of 0.17 cd/m2 and 266 
cd/m2 respectively and an overall gamma of 2.6. Stimuli were viewed binocularly through natural 
pupils in a darkened room at a distance of approximately 60 cm.  
 
2.2 Stimuli   
Forty two textures D2, D4, D5, D10, D11, D12, D29, D31, D33, D35, D37, D38, D40, D42, D43, D45, D46, 
D54, D58, D62, D65, D67, D71, D72, D74, D77, D84, D85, D86, D87, D89, D91, D93, D94, D97, D99, D101, 
D104, D108, D109, D110 and D111 obtained from the Brodatz database10 served as original images in 
the experiment. Six images were chosen for each of the following seven perceptual clusters reported 
previously for this database.11 

1) Extended contours (approximately straight) 
2) Periodic clusters 
3) Extended contours (curved) 
4) Rocks 
5) Inhomogeneous 
6) Stone 
7) Grainy 

The above digital images were resized to 256×256 pixels from 640×640 pixels using the imresize 
function in Matlab with bicubic interpolation. The images used were 8-bit grayscale images.  
 Figure 1 shows seven original textures (one from each cluster) and their synthesized textures. The 
first column of Figure 1 represents the original textures. All other columns in Figure 1 represent the 
synthesized textures for these original textures. The texture synthesis algorithms used in the 
experiments were: 
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Non-parametric texture synthesis algorithms: 

        1) Efros and Leung's algorithm3 (Alg1) 
        2) Image Quilting algorithm of Efros and Freeman4 (Alg2) 
        3) Wei and Levoy algorithm5 (Alg3) 
        4) Hertzmann et al. algorithm6 (Alg4) 

Parametric texture synthesis algorithms: 

        5) Portilla and Simoncelli's parametric model1 (Alg5) 
        6) Galerne et al. algorithm2 (Alg6)  

 

 

Original image Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 

       

       

       

       

       

       

       
Figure 1. Representative stimuli used in the experiment. First column: shows original textures, one from each 
cluster. Second column shows synthesized textures using Alg1. Third column shows synthesized textures of Alg2. 
Fourth column shows synthesized textures of Alg3. Fifth column shows synthesized textures of Alg4. Sixth 
column shows synthesized textures of Alg5. Seventh column shows synthesized textures of Alg6. 
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2.3 Procedures 
Subjective ratings were measured by using a continuous rating system in which the six synthesized 
textures were compared against the original texture. Seven textures were displayed simultaneously on 
a solid gray background with the original texture fixed on the leftmost position of the screen. The 
subjects were instructed to place the six synthesized versions to the right of the original such that the 
horizontal displacement between each synthesized texture and the original was linearly proportional 
to their subjective assessment of visual quality. Quality was defined as how well each synthesized 
texture represented a sample from the same source material from which the original texture was 
obtained. Thus, textures which were placed further to the right from the original image were judged to 
have lower visual quality relative to the original. The time for each texture was not limited, but the 
average time for all the subjects for the entire experiment was between 55 and 60 minutes. 
 When the experiment was completed by all the subjects, an additional experiment was performed 
by five observers (including the first and third authors) using the same procedures but with 
simultaneous presentation of 168 textures. This follow-up experiment was necessary to scale the 
within-texture results to between-texture scores. The raw scores for each subject on each of the 
original textures were converted to z-scores and these z-scores were averaged over all the subjects.  
The average z-scores were scaled from within-texture results to between-texture scores, and these 
results were then normalized to the range [0, 1], where a score of 1 corresponds to the worst 
synthesized image (DMOS values). 

 3.  RESULTS AND ANALYSIS 
3.1 Experimental Results 
The experimental results show the performance of parametric and non-parametric algorithms. 
Textures which preserved the structures of the original texture were rated best by the subjects. The 
parametric algorithms were not able to regenerate complex structures, for example see Figure 1 third 
row Alg5 and 6. The DMOS for the parametric algorithms were 0.56 with a standard deviation of 
0.24. For the non-parametric algorithms, the average DMOS was 0.25 with a standard deviation of 
0.19. These results show that the parametric algorithms were outperformed by the non-parametric 
algorithms for most of the textures. The parametric algorithms performed well only on the micro-
textures15, i.e., textures with no structures (for example, see Figure 1 second and last row Alg5 and 6).  
 In addition to the lack of structure, the ratings revealed that subjects disliked textures containing 
the following artifacts:  

1) Too many repetitions of the same patch (tiling); see Figure 1, fifth row, Alg2.  

2) Misalignment of the texture patterns; see Figure 1, Alg4.  
3) Blurring in the texture patterns, performed to mask the misalignments; see Figure 1, fourth 

row, Alg1, 3.  

The average subjective ratings of textures with these artifacts were 0.452, 0.414 and 0.461 
respectively.  
 Table 1 shows the performance of the algorithms on the seven clusters. Non-parametric 
algorithms performed well on all seven clusters (see Table 1). Parametric algorithms performed well 
only on some of the clusters. Parametric algorithms failed on straight and curved extended contours 
(clusters 1 and 3, respectively) as they were not able to regenerate these shapes. Parametric algorithms 
performed well on periodic (cluster 2) and grainy (cluster 7) textures, as they were microtextures15, 
but not as good as the non-parametric algorithms. Parametric algorithms failed on stone textures 
(cluster 4) and rocks (cluster 6) which had structures; for example, see Figure 1, fourth and sixth 
rows, respectively. Parametric algorithms failed on inhomogeneous textures (cluster 5) which also had 
shapes and structures. 
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3.2 Analysis of Change in Parameters 
One way to estimate the quality of a synthesized texture is to compare parameters extracted from the 
source texture with those extracted from the synthesized texture. We evaluated the following 
parameters:  
 

1. Portilla and Simoncelli’s parameters1: The include the following: 

a. Mean, variance, skewness, kurtosis, minimum, and maximum of the pixel values 

b. Autocorrelation of the lowpass and Highpass bands (݌ଵ) 

c. Cross correlation of the orientations (݌ଶ) and scale (݌ଷ) 

d. Cross-scale phase (݌ସ) 

2. Kullback-Leibler divergence12 (KLD) computed on the Steerable Pyramid coefficients from 
Ref. 1 (݌ହ) 

3. The first-order entropy of the pixel values13  
 
The steerable pyramid used for Portilla and 
Simoncelli’s algorithm and KLD had four scales 
and six orientations. We modified some of the 
configurational settings of Portilla and Simoncelli’s 
algorithm for some of the parameters. For auto 
correlation of the high pass bands, we used a spatial 
neighborhood of 7×7. We weighted the 
autocorrelation coefficients for each scale of the 
high pass bands. Weights used were 0.7 for the first 
finest scale and 0.1 to the remaining scales. For 
cross-scale phase, we used a spatial neighborhood 
of 15×15. 
 For Portilla and Simoncelli’s parameters and 
for the entropy of the pixels, we computed the 
absolute difference between each parameter 
obtained from the original texture and the 
corresponding parameter obtained from the 
synthesized texture. For KLD, we computed the 
KLD of the magnitudes between the steerable 
pyramid subbands of the original and synthesized 
textures. The minimum of the KLDs obtained from 
each subband was assigned as the overall KLD.  
 To investigate how well each individual 
parameter (difference) performed in predicting the subjective ratings, nonlinear regression and cross-
validation was performed. Cross-validation was used to avoid overfitting; it was performed multiple 
times on different partitions and the results were averaged over the validations. The 42 textures used 
in the experiments were randomly split into training and testing sets (containing 21 textures each).  

Table 1. Average subjective ratings of the synthesized textures for each of the seven clusters. 

 
Clusters 

Average subjective ratings (DMOS) 
For all six algorithms Non-parametric algorithms Parametric algorithms 

Cluster 1 0.334 0.251 0.501 
Cluster 2 0.324 0.267 0.440 
Cluster 3 0.401 0.311 0.582 
Cluster 4 0.385 0.245 0.664 
Cluster 5 0.384 0.239 0.674 
Cluster 6 0.363 0.257 0.575 
Cluster 7 0.290 0.225 0.419 

 

Table 2. Correlation of each parameter with the 
subjective ratings with and without Alg5 
obtained from a testing set of one of the trials of 
cross-validation. 

Parameter 
Differences 

Correlation 
   w/ Alg5 

Correlation 
w/o Alg5 

Mean 0.08 0.19 

Variance 0.36 0.39 

Skewness 0.40 0.42 

Kurtosis 0.27 0.31 

Minimum intensity 0.39 0.42 

Maximum intensity 0.28 0.36 
Autocorrelation of the 
Lowpass bands 0.24 0.28 

Autocorrelation of the 
Highpass bands ( ଵ) 0.70 0.78 

Cross correlation of 
orientations ( ଶ) 0.59 0.64 

Cross correlation of 
scale ( ଶ) 0.65 0.73 

Cross scale phase (P4) 0.48 0.48 
KLD in frequency 
(P5)  

0.63 0.72 

Entropy 0.36 0.44 
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Figure 2. Shows the scatterplots of subjective ratings versus various estimators. A linear curve-fitting was used 
for the scatterplots and listed correlation coefficients. 
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The random splitting process was performed ten times and the results were averaged over the testing 
sets. 
 Table 2 shows the Pearson correlation coefficients between the evaluated parameters and 
subjective ratings using a testing set obtained from one of the trials in cross-validation. Some of the 
marginal statistics do not correlate well, but other parameters such as cross correlation, 
autocorrelation of the high pass bands, cross-scale phase, and KLD perform quite well. We also 
observed that the correlations improve if we do not include the stimuli synthesized using Portilla and 
Simoncelli’s algorithm. 
 
3.3 Combining the Parameters 
We next examined whether a weighted combination of some of Portilla and Simoncelli’s parameter 
differences ( ଵܲ, ଶܲ, ଷܲ and ସܲ, see Table 2) and KLD ( ହܲ) could yield a better prediction of quality 
than each parameter alone. Equation 1 shows how each of the chosen parameters were combined.   
                                                                          ܳ = ෍ ௜ܹହ

௜ୀଵ logଵ଴ ௜ܲ ,                                                                    (1) 

 
Here, ܳ represents the final quality estimate, and ௜ܹ represents the weight for the parameter ௜ܲ. After 
performing cross-validation for ten trials, we obtained the following weights: 0.45, 1, 0.1, 0.25 and 
0.3 for ଵܲ through ହܲ, respectively.  
 Figure 2 shows scatterplots of subjective ratings plotted against estimates from PSNR, 
CWSSIM,14 VSNR15, VIF,16 MAD17, and the above combination on all textures except those from 
Alg5 (Portilla and Simoncelli). A testing set from one of the trials used in cross-validation was used 
for the scatterplots. The ratings obtained from each of the quality assessment methods have been 
normalized between zero and one and the ratings were fitted using a linear function. For the 
combination of parameters given by Equation (1), cross-validation yielded an average Pearson 
correlation coefficient of 0.804 and 0.814 for the training and testing sets, respectively.  
 

4. CONCLUSION 
 Our analysis demonstrates that a parameter-based approach can be successful for quality 
assessment, despite the fact that parametric texture-synthesis algorithms generally perform worse in 
texture synthesis than non-parametric methods.  
A psychophysical experiment was conducted to obtain visual quality ratings of synthesized textures. 
Overall, we found that non-parametric algorithms performed better than parametric algorithms. The 
artifacts found in the synthesized textures most disliked by the subjects were: lack of structure, tiling, 
misalignments, and blurring artifacts. We also found why the parametric algorithms failed on the 
some of the seven clusters: The parametric algorithms generally were not able to synthesize complex 
shapes and structures which subjects tended to look for when gauging visual quality.  
 In addition, we demonstrated that a texture quality assessment estimator which included KLD in 
frequency and select parameters from a parametric texture-synthesis algorithm can perform well in 
predicting the visual quality of the synthesized textures. Traditional image quality assessment 
algorithms failed on this task.  
 There are notable cases in which the proposed quality estimator fails to predict the subjective 
ratings. Figure 3 shows some of these failure cases. The average DMOS values for the synthesized 
textures in Figure 3 was 0.824 and the average normalized prediction was 0.478. Subjects rated these 
synthesized textures to be of relatively low quality due to the fact that the synthesized textures lack 
the objects found in the original textures (gravel, pebbles, and ice cubes). The quality estimator is not 
able to recognize that these objects are absent. 
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